Moving average smoothing stata no Brasil


Previsão por técnicas de suavização Este site é uma parte dos objetos de aprendizagem de JavaScript E-laboratórios para tomada de decisão. Outros JavaScript nesta série são classificados em diferentes áreas de aplicações na seção MENU nesta página. Uma série de tempo é uma seqüência de observações que são ordenadas no tempo. Inerente na coleta de dados levados ao longo do tempo é alguma forma de variação aleatória. Existem métodos para reduzir o cancelamento do efeito devido a variação aleatória. As técnicas amplamente utilizadas são suavização. Estas técnicas, quando devidamente aplicadas, revelam mais claramente as tendências subjacentes. Insira a série de tempo em ordem de linha em seqüência, começando pelo canto superior esquerdo e o (s) parâmetro (s) e, em seguida, clique no botão Calcular para obter uma previsão de um período antecipado. As caixas em branco não são incluídas nos cálculos, mas os zeros são. Ao inserir seus dados para mover de célula para célula na matriz de dados use a tecla Tab não seta ou digite chaves. Características de séries temporais, que podem ser reveladas ao examinar seu gráfico. Com os valores previstos, eo comportamento residual, modelagem de previsão de condições. Médias móveis: As médias móveis classificam-se entre as técnicas mais populares para o pré-processamento de séries temporais. Eles são usados ​​para filtrar o ruído branco aleatório dos dados, para tornar a série de tempo mais suave ou mesmo para enfatizar certos componentes informativos contidos na série de tempo. Suavização Exponencial: Este é um esquema muito popular para produzir uma Série de Tempo suavizada. Enquanto nas Médias Móveis as observações passadas são ponderadas igualmente, a Suavização Exponencial atribui pesos exponencialmente decrescentes à medida que a observação avança. Em outras palavras, as observações recentes recebem relativamente mais peso na previsão do que as observações mais antigas. O Double Exponential Smoothing é melhor para lidar com as tendências. Triple Exponential Smoothing é melhor no manuseio de tendências de parabola. Uma média móvel exponencialmente ponderada com uma constante de suavização a. Corresponde aproximadamente a uma média móvel simples de comprimento (isto é, período) n, onde a e n estão relacionados por: a 2 (n1) OR n (2 - a) a. Assim, por exemplo, uma média móvel exponencialmente ponderada com uma constante de suavização igual a 0,1 corresponderia aproximadamente a uma média móvel de 19 dias. E uma média móvel simples de 40 dias corresponderia aproximadamente a uma média móvel exponencialmente ponderada com uma constante de alisamento igual a 0,04878. Suavização Linear Exponencial de Holts: Suponha que a série de tempo não é sazonal, mas exibe tendência. Holts método estima tanto o nível atual ea tendência atual. Observe que a média móvel simples é caso especial da suavização exponencial, definindo o período da média móvel para a parte inteira de (2-Alpha) Alpha. Para a maioria dos dados de negócios, um parâmetro Alpha menor que 0,40 é freqüentemente efetivo. No entanto, pode-se realizar uma busca de grade do espaço de parâmetro, com 0,1 a 0,9, com incrementos de 0,1. Então o melhor alfa tem o menor erro médio absoluto (erro MA). Como comparar vários métodos de alisamento: Embora existam indicadores numéricos para avaliar a precisão da técnica de previsão, a abordagem mais abrangente é o uso de comparação visual de várias previsões para avaliar a sua precisão e escolher entre os vários métodos de previsão. Nesta abordagem, é necessário plotar (usando, por exemplo, Excel) no mesmo gráfico os valores originais de uma variável de série temporal e os valores previstos de vários métodos de previsão diferentes, facilitando assim uma comparação visual. Você pode gostar de usar as Previsões Passadas por Técnicas de Suavização JavaScript para obter os valores de previsão anteriores com base em técnicas de suavização que usam apenas um único parâmetro. Os métodos Holt e Winters usam dois e três parâmetros, respectivamente, portanto, não é uma tarefa fácil selecionar os valores ótimos, ou até perto de ótimos, por tentativa e erros para os parâmetros. A suavização exponencial única enfatiza a perspectiva de curto alcance que define o nível para a última observação e é baseada na condição de que não há tendência. A regressão linear, que se ajusta a uma linha de mínimos quadrados aos dados históricos (ou dados históricos transformados), representa a faixa de longo alcance, que está condicionada à tendência básica. Holts linear suavização exponencial captura informações sobre tendência recente. Os parâmetros no modelo de Holts são níveis-parâmetro que devem ser diminuídos quando a quantidade de variação de dados é grande, e as tendências-parâmetro devem ser aumentadas se a tendência de direção recente é suportada pelo causal alguns fatores. Previsão de Curto Prazo: Observe que cada JavaScript nesta página fornece uma previsão de um passo adiante. Para obter uma previsão de duas etapas. Basta adicionar o valor previsto ao final dos dados de séries temporais e, em seguida, clicar no mesmo botão Calcular. Você pode repetir este processo por algumas vezes para obter as previsões necessárias a curto prazo. Métodos de séries temporais Métodos de séries temporais são técnicas estatísticas que fazem uso de dados históricos acumulados durante um período de tempo. Os métodos da série temporal assumem que o que ocorreu no passado continuará a ocorrer no futuro. Como sugere a série temporal de nomes, esses métodos relacionam a previsão a apenas um fator - tempo. Eles incluem a média móvel, suavização exponencial e linha de tendência linear e estão entre os métodos mais populares para a previsão de curto prazo entre as empresas de serviços e de fabricação. Esses métodos pressupõem que padrões históricos identificáveis ​​ou tendências para a demanda ao longo do tempo se repetirão. Média móvel Uma previsão de séries de tempo pode ser tão simples como usar a demanda no período atual para prever a demanda no próximo período. Isso às vezes é chamado de previsão ingênua ou intuitiva. 4 Por exemplo, se a demanda é de 100 unidades esta semana, a previsão para as próximas semanas demanda é de 100 unidades, se a demanda acaba por ser 90 unidades, em seguida, as semanas seguintes demanda é de 90 unidades, e assim por diante. Esse tipo de método de previsão não leva em conta o comportamento histórico da demanda, que se baseia apenas na demanda no período corrente. Ele reage diretamente aos movimentos normais, aleatórios na demanda. O método de média móvel simples usa vários valores de demanda durante o passado recente para desenvolver uma previsão. Isso tende a atenuar, ou suavizar, os aumentos aleatórios e diminuições de uma previsão que usa apenas um período. A média móvel simples é útil para prever a demanda que é estável e não exibe qualquer comportamento de demanda pronunciado, como uma tendência ou padrão sazonal. As médias móveis são calculadas para períodos específicos, como três meses ou cinco meses, dependendo de quanto o meteorologista deseja suavizar os dados da demanda. Quanto mais longo for o período de média móvel, mais suave será. A fórmula para computar a média móvel simples é computar uma média movente simples A empresa instantânea da fonte do escritório do grampo do papel vende e entrega materiais de escritório às companhias, às escolas, e às agências dentro de um raio de 50 milhas de seu armazém. O negócio de suprimentos de escritório é competitivo, ea capacidade de entregar ordens prontamente é um fator para obter novos clientes e manter os antigos. (Os escritórios geralmente não exigem quando eles correm baixos suprimentos, mas quando eles acabam completamente fora. Como resultado, eles precisam de suas ordens imediatamente.) O gerente da empresa quer ser certos drivers e veículos estão disponíveis para entregar ordens prontamente e Eles têm estoque adequado em estoque. Portanto, o gerente quer ser capaz de prever o número de pedidos que ocorrerão durante o próximo mês (ou seja, para prever a demanda por entregas). A partir de registros de ordens de entrega, a gerência acumulou os seguintes dados para os últimos 10 meses, a partir do qual pretende calcular média móvel de 3 e 5 meses. Vamos supor que é o fim de outubro. A previsão resultante da média móvel de 3 ou 5 meses é tipicamente para o próximo mês na seqüência, que neste caso é novembro. A média móvel é calculada a partir da demanda por ordens para os 3 meses anteriores na seqüência de acordo com a seguinte fórmula: A média móvel de 5 meses é calculada a partir dos dados de demanda de 5 meses anteriores como segue: A média móvel de 3 e 5 meses As projeções de média móvel para todos os meses de demanda são mostradas na tabela a seguir. Na verdade, apenas a previsão para novembro com base na demanda mensal mais recente seria usada pelo gerente. No entanto, as previsões anteriores para meses anteriores nos permitem comparar a previsão com a demanda real para ver quão preciso é o método de previsão - ou seja, quão bem ele faz. Médias de três e cinco meses As previsões de média móvel na tabela acima tendem a suavizar a variabilidade que ocorre nos dados reais. Este efeito de alisamento pode ser observado na seguinte figura em que as médias de 3 meses e 5 meses foram sobrepostas em um gráfico dos dados originais: A média móvel de 5 meses na figura anterior suaviza as flutuações em maior extensão do que A média móvel de 3 meses. No entanto, a média de 3 meses reflete mais de perto os dados mais recentes disponíveis para o gerente de suprimentos de escritório. Em geral, as previsões usando a média móvel de longo prazo são mais lentas para reagir às mudanças recentes na demanda do que aquelas feitas usando médias móveis de período mais curto. Os períodos extras de dados atenuam a velocidade com a qual a previsão responde. Estabelecer o número apropriado de períodos para usar em uma média móvel de previsão muitas vezes requer alguma quantidade de experimentação de tentativa e erro. A desvantagem do método da média móvel é que não reage a variações que ocorrem por uma razão, tais como ciclos e efeitos sazonais. Os fatores que causam mudanças são geralmente ignorados. É basicamente um método mecânico, que reflete dados históricos de forma consistente. No entanto, o método da média móvel tem a vantagem de ser fácil de usar, rápido e relativamente barato. Em geral, este método pode fornecer uma boa previsão para o curto prazo, mas não deve ser empurrado demasiado longe no futuro. Média Móvel Ponderada O método da média móvel pode ser ajustado para refletir mais de perto flutuações nos dados. No método da média móvel ponderada, os pesos são atribuídos aos dados mais recentes de acordo com a seguinte fórmula: Os dados de demanda para PM Computer Services (mostrados na tabela para o Exemplo 10.3) parecem seguir uma tendência linear crescente. A empresa quer calcular uma linha de tendência linear para ver se ela é mais precisa do que as previsões de suavização exponencial e de suavização exponencial ajustadas desenvolvidas nos Exemplos 10.3 e 10.4. Os valores necessários para os cálculos dos mínimos quadrados são os seguintes: Usando esses valores, os parâmetros para a linha de tendência linear são calculados da seguinte forma: Portanto, a equação da linha de tendência linear é: Para calcular uma previsão para o período 13, Linha de tendência: O gráfico a seguir mostra a linha de tendência linear em comparação com os dados reais. A linha de tendência parece refletir de perto os dados reais - isto é, ser um bom ajuste - e seria assim um bom modelo de previsão para esse problema. No entanto, uma desvantagem da linha de tendência linear é que ele não vai se ajustar a uma mudança na tendência, como os métodos de previsão de suavização exponencial, ou seja, é assumido que todas as previsões futuras seguirá uma linha reta. Isso limita o uso deste método para um período de tempo mais curto em que você pode ser relativamente certo de que a tendência não vai mudar. Ajustes Sazonais Um padrão sazonal é um aumento repetitivo e diminuição da demanda. Muitos itens de demanda apresentam comportamento sazonal. As vendas de vestuário seguem os padrões sazonais anuais, com a demanda de roupas quentes aumentando no outono e inverno e declinando na primavera e no verão como a demanda por roupas mais frias aumenta. A demanda por muitos itens de varejo, incluindo brinquedos, equipamentos esportivos, roupas, aparelhos eletrônicos, presuntos, perus, vinho e frutas, aumentam durante a temporada de férias. A demanda do cartão aumenta em conjunção com dias especiais como Dia dos Namorados e Dia das Mães. Padrões sazonais também podem ocorrer em uma base mensal, semanal ou mesmo diária. Alguns restaurantes têm demanda mais elevada na noite do que no almoço ou nos fins de semana ao contrário dos dias úteis. Tráfego - daí as vendas - em shopping centers pega na sexta-feira e sábado. Existem vários métodos para refletir padrões sazonais em uma previsão de séries temporais. Vamos descrever um dos métodos mais simples usando um fator sazonal. Um fator sazonal é um valor numérico que é multiplicado pela previsão normal para obter uma previsão ajustada sazonalmente. Um método para desenvolver uma demanda por fatores sazonais é dividir a demanda para cada período sazonal pela demanda anual total, de acordo com a seguinte fórmula: Os fatores sazonais resultantes entre 0 e 1,0 são, de fato, a parcela da demanda anual total atribuída a Cada estação. Esses fatores sazonais são multiplicados pela demanda anual prevista para produzir previsões ajustadas para cada estação. Calculando uma Previsão com Ajustes Sazonais A Wishbone Farms cria perus para vender a uma empresa de processamento de carne ao longo do ano. No entanto, sua alta temporada é obviamente durante o quarto trimestre do ano, de outubro a dezembro. A Wishbone Farms experimentou a demanda por perus nos últimos três anos, conforme mostrado na tabela a seguir: Como temos três anos de dados de demanda, podemos calcular os fatores sazonais dividindo a demanda trimestral total pelos três anos pela demanda total nos três anos : Em seguida, queremos multiplicar a demanda prevista para o próximo ano, 2000, por cada um dos fatores sazonais para obter a demanda prevista para cada trimestre. Para conseguir isso, precisamos de uma previsão de demanda para 2000. Nesse caso, uma vez que os dados de demanda na tabela parecem exibir uma tendência geralmente crescente, calculamos uma linha de tendência linear para os três anos de dados na tabela para obter um resultado bruto Estimativa de previsão: Assim, a previsão para 2000 é 58.17, ou 58.170 perus. Usando esta previsão anual de demanda, as previsões ajustadas sazonalmente, SF i, para 2000 são comparando essas previsões trimestrais com os valores de demanda reais na tabela, eles pareceriam ser estimativas de previsão relativamente boas, refletindo tanto as variações sazonais nos dados e Tendência ascendente geral. 10-12. Como o método da média móvel é semelhante ao alisamento exponencial 10-13. O efeito no modelo de suavização exponencial aumentará a constante de suavização 10-14. Como a suavização exponencial ajustada difere da suavização exponencial 10-15. O que determina a escolha da constante de suavização para a tendência em um modelo de suavização exponencial ajustado 10-16. Nos exemplos de capítulo para métodos de séries temporais, a previsão inicial foi sempre assumida como sendo a mesma da demanda real no primeiro período. Sugira outras maneiras de que a previsão inicial possa ser derivada em uso real. 10-17. Como o modelo de previsão da linha de tendência linear difere de um modelo de regressão linear para previsão 10-18. Dos modelos de séries temporais apresentados neste capítulo, incluindo a média móvel ea média móvel ponderada, a suavização exponencial ea suavização exponencial ajustada, ea linha de tendência linear, qual você considera o melhor Por que 10-19. Quais as vantagens que a suavização exponencial ajustada tem sobre uma linha de tendência linear para a demanda prevista que exibe uma tendência 4 K. B. Kahn e J. T. Mentzer, Forecasting in Consumer and Industrial Markets, The Journal of Business Forecasting 14, no. 2 (Verão 1995): 21-28.Stata: Análise de Dados e Software Estatístico Nicholas J. Cox, Universidade de Durham, Reino Unido Christopher Baum, Faculdade de Boston egen, ma () e suas limitações Statarsquos comando mais óbvio para calcular médias móveis é o ma () Função de egen. Dada uma expressão, cria uma média móvel - period dessa expressão. Por padrão, é tomado como 3. deve ser ímpar. No entanto, como a entrada manual indica, egen, ma () não pode ser combinado com varlist:. E, por esse motivo, não é aplicável aos dados do painel. Em qualquer caso, fica fora do conjunto de comandos especificamente escritos para séries temporais, veja as séries temporais para detalhes. Abordagens alternativas Para calcular médias móveis para dados de painel, existem pelo menos duas opções. Ambos dependem do conjunto de dados ter sido tsset previamente. Isso vale muito a pena fazer: não só você pode salvar a si mesmo repetidamente especificando variável de painel e variável de tempo, mas Stata se comporta de forma inteligente, dada qualquer lacuna nos dados. 1. Escreva sua própria definição usando generate Usando operadores de séries temporais como L. e F. Dar a definição da média móvel como o argumento para uma declaração de geração. Se você fizer isso, você não estará, naturalmente, limitado às médias móveis ponderadas (não ponderadas) centradas calculadas por egen, ma (). Por exemplo, as médias móveis ponderadas de três períodos seriam dadas por e alguns pesos podem ser facilmente especificados: Você pode, naturalmente, especificar uma expressão como log (myvar) em vez de um nome de variável como myvar. Uma grande vantagem dessa abordagem é que a Stata automaticamente faz a coisa certa para os dados do painel: os valores iniciais e retardatários são elaborados dentro dos painéis, exatamente como a lógica determina que eles devam ser. A desvantagem mais notável é que a linha de comando pode ficar bastante longa se a média móvel envolver vários termos. Outro exemplo é uma média móvel unilateral baseada apenas em valores anteriores. Isso poderia ser útil para gerar uma expectativa adaptativa do que uma variável será baseada puramente em informações até à data: o que alguém poderia prever para o período atual baseado nos últimos quatro valores, usando um esquema de ponderação fixo Especialmente comumente usado com timeseries trimestrais.) 2. Use egen, filter () de SSC Use o filtro de função egen escrito pelo usuário () do pacote egenmore em SSC. No Stata 7 (atualizado após 14 de novembro de 2001), você pode instalar este pacote após o qual a ajuda egenmore aponta para detalhes sobre filter (). Os dois exemplos acima seriam renderizados (nesta comparação, a abordagem de gerar é talvez mais transparente, mas veremos um exemplo do oposto em um momento). Os retornos são um numlist. Leva-se a defasagens negativas: nesse caso -11 se expande para -1 0 1 ou chumbo 1, atraso 0, atraso 1. Os coeficientes, outro número, multiplicam os itens correspondentes retardados ou principais: neste caso, esses itens são F1.myvar . Myvar e L1.myvar. O efeito da opção de normalização é escalar cada coeficiente pela soma dos coeficientes para que o coeficiente (1 1 1) normalize seja equivalente aos coeficientes de 13 13 13 e o coeficiente (1 2 1) normalize seja equivalente aos coeficientes de 14 12 14 Você deve especificar não apenas os atrasos, mas também os coeficientes. Como egen, ma () fornece o caso igualmente ponderado, a razão principal para egen, filter () é suportar o caso desigualmente ponderado, para o qual você deve especificar coeficientes. Poderia também ser dito que obrigar os usuários a especificar coeficientes é uma pequena pressão extra sobre eles para pensar sobre quais coeficientes eles querem. A principal justificativa para pesos iguais é, suponhamos, simplicidade, mas pesos iguais têm propriedades de domínio de frequência ruim, para mencionar apenas uma consideração. O terceiro exemplo acima pode ser qualquer um dos quais é quase tão complicado quanto a abordagem gerar. Há casos em que egen, filter () dá uma formulação mais simples do que gerar. Se você quer um filtro binomial de nove períodos, que os climatologistas acham útil, então parece talvez menos horrível do que, e mais fácil de obter do que, Assim como com a abordagem de geração, egen, filter () funciona corretamente com dados do painel. Na verdade, como dito acima, depende do conjunto de dados ter sido tsset previamente. Uma dica gráfica Depois de calcular suas médias móveis, você provavelmente vai querer olhar para um gráfico. O comando tsgraph escrito pelo usuário é inteligente sobre conjuntos de dados tsset. Instale-o em um Stata 7 atualizado por ssc inst tsgraph. O que sobre subconjunto com se nenhum dos exemplos acima fazer uso de se restrições. Na verdade egen, ma () não permitirá se a ser especificado. Ocasionalmente as pessoas querem usar se ao calcular médias móveis, mas seu uso é um pouco mais complicado do que é normalmente. O que você esperaria de uma média móvel calculada com if. Vamos identificar duas possibilidades: Fraca interpretação: Eu não quero ver nenhum resultado para as observações excluídas. Interpretação forte: Eu nem quero que você use os valores para as observações excluídas. Aqui está um exemplo concreto. Suponha como conseqüência de alguma condição if, as observações 1-42 estão incluídas, mas não as observações 43 sobre. Mas a média móvel de 42 dependerá, entre outras coisas, do valor de observação 43 se a média se estender para trás e para a frente e for de comprimento pelo menos 3, e dependerá também de algumas das observações 44 em diante em algumas circunstâncias. Nossa suposição é que a maioria das pessoas iria para a interpretação fraca, mas se isso está correto, egen, filter () não suporta se. Você sempre pode ignorar o que você donrsquot quer ou mesmo definir valores indesejados para desaparecer depois, usando substituir. Uma nota sobre os resultados faltantes nas extremidades da série Como as médias móveis são funções de defasagens e derivações, egen, ma () produz faltando onde não existem os retornos e derivações, no início e no final da série. Uma opção nomiss força o cálculo de médias móveis mais curtas e não centralizadas para as caudas. Em contraste, nem gerar nem egen, filter () faz, ou permite, nada de especial para evitar resultados em falta. Se algum dos valores necessários para o cálculo estiver faltando, então esse resultado está ausente. Cabe aos usuários decidir se e o que a cirurgia corretiva é necessária para essas observações, presumivelmente depois de olhar para o conjunto de dados e considerar qualquer ciência subjacente que pode ser levado a suportar.

Comments